
The GCL ANSI Common Lisp Test Suite

Paul F. Dietz
�

Abstract

I describe the conformance test suite for ANSI Common Lisp distributed as part of GNU Common
Lisp (GCL). The test suite includes more than 20,000 individual tests, as well as random test generators for
exercising speci�c parts of Common Lisp implementations, and has re



Implementation Hardware Platforms
GNU Comm9true
/W 1
0.254Td
(are)Lisp16.0433.396d
(are)All16.04736472d
(are)debia
/W 131.734Td
(are)porms





i�cations in the ‘Exceptional Situations’ sections for operator dictionary entries, as well as tests for calls to
functions with too few or too many arguments, keyword parameter errors, and violations of the �rst paragraph
of CLHS section 14.1.2.3. When type errors are speci�ed or when the CLHS requires that some operator have
a well-de�ned meaning on any Lisp value, the tests iterate over a set of precomputed Lisp objects called the
‘univ



semantics, it is easy to generate related, but different, forms that should yield the same result (thereby providing
a test oracle.)

The Random Tester performs the following steps. For some input parameters � and � (each positive inte-
gers):

1. Produce a list of � symbols that will be the parameters of a lambda e







may be constrained to 64 bits while unboxed values in machine registers may have additional ‘hidden’differencesunbmake differentialtesting challenging.Objects chapter containsunbinterfaces that are



6 Directions For Future Work

The test suite still has a few areas that are not suf�ciently tested. Setf expanders need more testing, as do logical
pathnames and �le compilation. Floating point functions are inadequately tested. As mentioned earlier, it isn’t
clear what precision is expected of these functions, but perhaps tests can be written that check if the error is too
large (in some suf�ciently useful sense.)

The random compiler tester, as implemented, is constrained to generate forms that remain conforming
as they are simpli�ed. This limits the use of certain operators that do not take the entire set of integers as
their arguments. For example, ISQRT



[5] Christian Lindig. Random testing the translation of C function calls. At http://www.st.cs.uni-
sb.de/ lindig/src/quest/quest.pdf, Feb. 2005.

[6] W. M. McKeeman. Differential testing for software. Digital Technical Journal, 10(1):100�107, 1998.

[7] Barton P. Miller, Louis Fredriksen, and Bryan So. An empirical study of the reliability of unix utilities.
Commun. ACM, 33(12):32�44, 1990.

[8] Glenford J. Myers. TheSoftware Testing. John W


